A Bayesian Search for Transcriptional Motifs
نویسندگان
چکیده
Identifying transcription factor (TF) binding sites (TFBSs) is an important step towards understanding transcriptional regulation. A common approach is to use gaplessly aligned, experimentally supported TFBSs for a particular TF, and algorithmically search for more occurrences of the same TFBSs. The largest publicly available databases of TF binding specificities contain models which are represented as position weight matrices (PWM). There are other methods using more sophisticated representations, but these have more limited databases, or aren't publicly available. Therefore, this paper focuses on methods that search using one PWM per TF. An algorithm, MATCHTM, for identifying TFBSs corresponding to a particular PWM is available, but is not based on a rigorous statistical model of TF binding, making it difficult to interpret or adjust the parameters and output of the algorithm. Furthermore, there is no public description of the algorithm sufficient to exactly reproduce it. Another algorithm, MAST, computes a p-value for the presence of a TFBS using true probabilities of finding each base at each offset from that position. We developed a statistical model, BaSeTraM, for the binding of TFs to TFBSs, taking into account random variation in the base present at each position within a TFBS. Treating the counts in the matrices and the sequences of sites as random variables, we combine this TFBS composition model with a background model to obtain a Bayesian classifier. We implemented our classifier in a package (SBaSeTraM). We tested SBaSeTraM against a MATCHTM implementation by searching all probes used in an experimental Saccharomyces cerevisiae TF binding dataset, and comparing our predictions to the data. We found no statistically significant differences in sensitivity between the algorithms (at fixed selectivity), indicating that SBaSeTraM's performance is at least comparable to the leading currently available algorithm. Our software is freely available at: http://wiki.github.com/A1kmm/sbasetram/building-the-tools.
منابع مشابه
Identification of putative transcriptional regulatory networks in Entamoeba histolytica using Bayesian inference
Few transcriptional regulatory networks have been described in non-model organisms. In Entamoeba histolytica seminal aspects of pathogenesis are transcriptionally controlled, however, little is known about transcriptional regulatory networks that effect gene expression in this parasite. We used expression data from two microarray experiments, cis-regulatory motif elucidation, and a naïve Bayesi...
متن کاملA Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis
Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...
متن کاملA Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis
Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...
متن کاملIdentification of DNA regulatory motifs using Bayesian variable selection
MOTIVATION Understanding the mechanisms that determine gene expression regulation is an important and challenging problem. A common approach consists of identifying DNA-binding sites from a collection of co-regulated genes and their nearby non-coding DNA sequences. Here, we consider a regression model that linearly relates gene expression levels to a sequence matching score of nucleotide patter...
متن کاملBayesian Models and Gibbs Sampling Strategies for Local Graph Alignment and Motif Identification in Stochastic Biological Networks∗
With increasing amounts of interaction data collected by high-throughput techniques, understanding the structure and dynamics of biological networks becomes one of the central tasks in post-genomic molecular biology. Recent studies have shown that many biological networks contain a small set of “network motifs,” which are suggested to be the basic cellular information-processing units in these ...
متن کاملBayesian Clustering of Transcription Factor Binding Motifs
Genes are often regulated in living cells by proteins called transcription factors (TFs) that bind directly to short segments of DNA in close proximity to specific genes. These binding sites have a conserved nucleotide appearance, which is called a motif. Several recent studies of transcriptional regulation require the reduction of a large collection of motifs into clusters based on the similar...
متن کامل